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Recap
• Randomized algorithms for routing to minimize congestion. Randomized complexity 

classes RP and BPP, connections to P/poly.

• Probability distributions over uncountably infinite spaces, 𝜎-field (𝜎-algebra), 
measurability, random variables, CDFs and density functions. 

• Gaussian random variables, properties. 𝑑-dimensional Gaussians.

• Dimensionality reduction and the Johnson-Lindenstrauss Lemma.

• Tail bounds for sum of independent squared-Gaussian RVs.



Random Walks on Graphs
Imagine you are lost in a maze.  How long will it take you to get out if you just walk 
around randomly?

General setup: Underlying undirected graph 𝐺 = (𝑉, 𝐸), with 𝑛 vertices and 𝑚 edges. 
Starting from some initial vertex, at each step we move to a random neighbor of 
current node.

Quantities of interest:

• Hitting time 𝐻𝑢𝑣: defined as 𝔼[number of steps to reach 𝑣 | start at 𝑢].  

• Commute time 𝐶𝑢𝑣: 𝔼[number of steps to reach 𝑣 and return to 𝑢| start at 𝑢].  

Let 𝑋𝑢𝑣
ℎ𝑖𝑡 = #steps to reach 𝑣 starting from 𝑢. So, 𝐻𝑢𝑣 = 𝔼 𝑋𝑢𝑣

ℎ𝑖𝑡 , 𝐶𝑢𝑣 = 𝔼 𝑋𝑢𝑣
ℎ𝑖𝑡 + 𝑋𝑣𝑢

ℎ𝑖𝑡 = 𝐻𝑢𝑣 + 𝐻𝑣𝑢.

• Cover time from 𝑢, 𝐶𝑜𝑣𝑢: 𝔼[number of steps to visit all of 𝐺| start at 𝑢].  

• Cover time of 𝐺, 𝐶𝑜𝑣𝐺: max
𝑢

𝐶𝑜𝑣𝑢.



Example

𝐻12? 𝐻21? 𝐻31? 𝐶𝑜𝑣𝐺?
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Cover-Time Theorem
Theorem: If G is a connected graph with n vertices and m edges, then 𝐶𝑜𝑣𝐺 ≤ 2𝑚(𝑛 − 1).

So, if you’re lost in a maze and walk around randomly, you will visit all the nodes (and 
hence, the exit) in 𝑂(𝑚𝑛) steps.

• On a line, this is tight: it really does take Θ 𝑛2  steps in expectation for a random walk 
to visit all the nodes.

• For some graphs, it is not tight.  E.g., for a clique, the cover time is only 𝑂(𝑛 log 𝑛).  
Can you see why?

• An example of a graph where cover time is Ω(𝑛3) is “lollipop graph”: clique of size 𝑛/2 
connected to line of length 𝑛/2. 



Cover-Time Theorem
Theorem: If G is a connected graph with n vertices and m edges, then 𝐶𝑜𝑣𝐺 ≤ 2𝑚(𝑛 − 1).

For convenience, lets consider current state as being on some edge {𝑢, 𝑣} headed in 
some direction (e.g., to 𝑣).  The theorem will follow from the following key lemma:

Lemma: for any edge/direction (𝑢, 𝑣), the expected number of steps between 
consecutive visits to 𝑢, 𝑣  is 2𝑚.

Note that the lemma implies that if 𝑢 and 𝑣 are neighbors, then 𝐶𝑣𝑢 ≤ 2𝑚, because 
expected time 𝑣 → 𝑢 → 𝑣 is ≤ expected time starting from 𝑣 to take 𝑢, 𝑣  edge.



Cover-Time Theorem
Theorem: If G is a connected graph with n vertices and m edges, then 𝐶𝑜𝑣𝐺 ≤ 2𝑚(𝑛 − 1).

For convenience, lets consider current state as being on some edge {𝑢, 𝑣} headed in 
some direction (e.g., to 𝑣).  The theorem will follow from the following key lemma:

Lemma: for any edge/direction (𝑢, 𝑣), the expected number of steps between 
consecutive visits to 𝑢, 𝑣  is 2𝑚.

Proof of Theorem from Lemma:

• Consider some spanning tree 𝑇 of 𝐺 and some fixed tour of 𝑇.

𝔼[time to visit 𝐺] ≤ 𝔼[time to visit nodes in that order]

= 

𝑢,𝑣 ∈𝑇

𝐻𝑢𝑣 + 𝐻𝑣𝑢

I.e., E[time from node 1 
until visit node 2] + E[time 

from node 2 until visit 
node 3] + … 

= 

𝑢,𝑣 ∈𝑇

𝐶𝑢𝑣 = 2𝑚(𝑛 − 1)



Proof of key lemma

• Suppose we started by picking an edge and direction uniformly at random (so our 

initial distribution has probability 
1

2𝑚
 on each directed edge).  What does our 

distribution look like after 1 step? 

Lemma: for any edge/direction (𝑢, 𝑣), the expected number of steps between 
consecutive visits to 𝑢, 𝑣  is 2𝑚.

First:

• Answer: the same.  (I.e., this is a stationary distribution)

• For any edge/dir (𝑣, 𝑤), Pr[on (𝑣, 𝑤) after 1 step] = σ𝑢: 𝑢,𝑣 ∈𝐸 Pr[was on (𝑢, 𝑣)] ⋅
1

deg(𝑣)
 

=
deg 𝑣

2𝑚
⋅

1

deg 𝑣
=

1

2𝑚
.



Proof of key lemma

• Suppose we started by picking an edge and direction uniformly at random (so our 

initial distribution has probability 
1

2𝑚
 on each directed edge).  What does our 

distribution look like after 1 step? 

Lemma: for any edge/direction (𝑢, 𝑣), the expected number of steps between 
consecutive visits to 𝑢, 𝑣  is 2𝑚.

First:

• Answer: the same.  (I.e., this is a stationary distribution)

• So, this means that for any directed edge (𝑢, 𝑣), in 𝑇 steps the expected number of 
traversals of that edge is 

𝑇

2𝑚
, by linearity of expectation.

To prove the lemma, we want to invert this, to say that the expected gap 
between consecutive traversals is 2𝑚.



Proof of key lemma
Lemma: for any edge/direction (𝑢, 𝑣), the expected number of steps between 
consecutive visits to 𝑢, 𝑣  is 2𝑚.

To prove the lemma, we want to invert this, to say that the expected gap 
between consecutive traversals is 2𝑚.

Note that if our positions at different times 𝑡 were independent, then this would follow 
immediately from the fact that the expected value of a Geometric(𝑝) R.V. is 1/𝑝.

However, these positions are not independent, so we need to be careful.  E.g., if the 
graph consisted of two disconnected pieces with 𝑚/2 edges each, then the expected 
time between consecutive traversals would be 𝑚 but the expected time to the first 
traversal would be infinite.



Proof of key lemma
Lemma: for any edge/direction (𝑢, 𝑣), the expected number of steps between 
consecutive visits to 𝑢, 𝑣  is 2𝑚.

To prove the lemma, we want to invert this, to say that the expected gap 
between consecutive traversals is 2𝑚.

Note that if our positions at different times 𝑡 were independent, then this would follow 
immediately from the fact that the expected value of a Geometric(𝑝) R.V. is 1/𝑝.

However, these positions are not independent, so we need to be careful.  E.g., if the 
graph consisted of two disconnected pieces with 𝑚/2 edges each, then the expected 
time between consecutive traversals would be 𝑚 but the expected time to the first 
traversal would be infinite.

Still, the Geometric RV intuition turns out to be the right one.



Proof of key lemma
Lemma: for any edge/direction (𝑢, 𝑣), the expected number of steps between 
consecutive visits to 𝑢, 𝑣  is 2𝑚.

• Consider our random walk process starting from the uniform distribution.  Let 𝑋1 be an 
RV denoting the time until we first reach (𝑢, 𝑣).  Then let 𝑋2 denote the time from that 
point until our 2nd traversal of (𝑢, 𝑣), etc.

• Because the graph is connected, we will indeed reach 𝑢, 𝑣  with probability 1.

• In fact, these R.V.s have bounded variance:

➢ Wherever you are, there is at least some (perhaps exponentially small) 𝛿 > 0 
probability that you reach (𝑢, 𝑣) in the next 𝑛 steps. 

➢ So, our process is dominated by 𝑛 times a Geometric(𝛿) RV, which has finite 
variance.

• As 𝑇 → ∞, with probability 1 the number of traversals 𝑁 → ∞ too.



Proof of key lemma
Lemma: for any edge/direction (𝑢, 𝑣), the expected number of steps between 
consecutive visits to 𝑢, 𝑣  is 2𝑚.

• Consider our random walk process starting from the uniform distribution.  Let 𝑋1 be an 
RV denoting the time until we first reach (𝑢, 𝑣).  Then let 𝑋2 denote the time from that 
point until our 2nd traversal of (𝑢, 𝑣), etc.

Now, let’s apply Chebyshev to 𝑋 =
𝑋1+⋯+𝑋𝑁

𝑁
.  Let 𝜎2 be upper bound on 𝑉𝑎𝑟[𝑋𝑖].

• Since 𝑋𝑖  are independent, 𝑉𝑎𝑟 𝑋 ≤
𝑁𝜎2

𝑁2 =
𝜎2

𝑁
.   So, ℙ 𝑋 − 𝔼 𝑋 ≥ 𝜖 ≤

𝜎2

𝑁𝜖2.

• So, for large 𝑁, whp the observed average gap length 𝑋 is close to its expectation.

…………. 𝑢 − 𝑣……………𝑢 − 𝑣….𝑢 − 𝑣………………𝑢 − 𝑣………….𝑢 − 𝑣….



Proof of key lemma
Lemma: for any edge/direction (𝑢, 𝑣), the expected number of steps between 
consecutive visits to 𝑢, 𝑣  is 2𝑚.

• Since 𝑋𝑖  are independent, 𝑉𝑎𝑟 𝑋 ≤
𝑁𝜎2

𝑁2 =
𝜎2

𝑁
.   So, ℙ 𝑋 − 𝔼 𝑋 ≥ 𝜖 ≤

𝜎2

𝑁𝜖2.

• So, for large 𝑁, whp the observed average gap length 𝑋 is close to its expectation.

…………. 𝑢 − 𝑣……………𝑢 − 𝑣….𝑢 − 𝑣………………𝑢 − 𝑣………….𝑢 − 𝑣….

This means that the fraction of time steps that are traversals of (𝑢, 𝑣), namely 1/𝑋, is 
also whp multiplicatively close to 1/𝔼[𝑋].

We know the expected fraction of time steps that are traversals is 
1

2𝑚
.   And if a bounded 

RV is concentrated, it has to concentrate about its expectation.  So, 𝔼 𝑋 = 2𝑚.



Something completely different(?): electrical networks

Consider a graph 𝐺 where on each edge we have a resistor of some resistance. 

• Say we connect a battery of some voltage 𝑉𝑏𝑎𝑡𝑡  between two nodes A and B (so 𝑉𝐴 − 𝑉𝐵 =
𝑉𝑏𝑎𝑡𝑡, and let’s for convenience say 𝑉𝐵 = 0). 

• Then each node in the graph will have a voltage (also called “potential”) and each edge will 
have some current flowing in some direction.

Can think of voltage as like “height”, and resistors like little water wheels or filters.



Something completely different(?): electrical networks

Voltages and currents can be computed using the following two rules.

• Kirchoff’s law: current is like water flow: for any node not connected to the battery, flow in = 
flow out.

• Ohm’s law: 𝑉 = 𝐼𝑅.  Here, 𝑅 is resistance, 𝑉 is the voltage drop, and 𝐼 is the current flow.

Effective resistance 𝑅𝑢𝑣 between 𝑢 and 𝑣: connect up battery, measure current, 𝑅𝑢𝑣 =
𝑉

𝐼
. 



Electrical networks and random walks

Consider a graph 𝐺, fix two 
distinguished nodes A,B.

Let 𝑝𝑢 be the probability a 
random walk starting from 𝑢 
reaches A before it reaches B.

Consider a random walk. Consider placing a 1-volt 
battery between A and B

Let 𝑉𝑢 be the voltage at node 𝑢.

Then 𝑝𝑢 = 𝑉𝑢.

• Solving for 𝑝𝑢: 𝑝𝐴 = 1, 𝑝𝐵 = 0, and for all 𝑢 ∉ {𝐴, 𝐵} we have 𝑝𝑢 =
1

deg(𝑢)
σ𝑣: 𝑢,𝑣 ∈𝐸 𝑝𝑣.

• Solving for 𝑉𝑢: 𝑉𝐴 = 1, 𝑉𝐵 = 0, and for all 𝑢 ∉ {𝐴, 𝐵} we have flow in = flow out, which 

means σ𝑣: 𝑢,𝑣 ∈𝐸
𝑉𝑣−𝑉𝑢

1
= 0, so 𝑉𝑢 =

1

deg(𝑢)
σ𝑣: 𝑢,𝑣 ∈𝐸 𝑉𝑣.



Electrical networks and random walks

Next time: more connections (exact expression for commute time in terms 
of effective resistance), and rapid mixing.
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